Answer based on intuition: How many people would you need to have in a room to have a greater than 50% chance that at least two of them share a birthday?

Lesson 007 **Counting Techniques September 25, 2023**

Counting

• $P(A) = \frac{N_A}{N}$ if all events are equally likely. • How do we find N_A or N

How many possible sequences of heads and tails are there, if you flip a coin 5 times.

The Product Rule for Counting

The product rule for counting states that

$N = n_1 \times n_2 \times \cdots \times n_k = \prod n_j$

• k choices with n_j options for each choice j = 1, 2, ..., k.

j = 1

Product Rule Counting

Number of meals from 4 appetizers, 5 entrees, and 3 desserts.

Combinations in a 4-digit combination lock, with repeating digits allowed.

5 letter words, that start and end in a vowel.

Total

$4 \times 5 \times 3 = 60$

$10 \times 10 \times 10 \times 10 = 10,000$

$5 \times 26 \times 26 \times 26 \times 5 = 439,400$

choosen?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

A home owner is remodelling and requires both plumbing and electrical contractors. There are 12 plumbing contractors, and 9 electrical contractors. How many ways can the contractors be

Combinations

Selecting from a set of options when order does not matter.

Permutations

Selecting from a set of options when order does matter.

Combinations

Forming groups for projects in a class.

Winning lottery numbers.

Possible hands in poker.

Permutations

Selecting a president, vice president, and treasurer for a club.

The combination of a lock.

Forming words of a set length.

A university has 7 departments, and each department has a student representative. From these representatives, 3 are selected to attend a student conference. To find the number of groups of students attending the conference we would use:

Combinations

Permutations

0%

0%

Combinations

• You wish to select k elements from a set of n elements, in an unordered manner.

• We say "*n* choose *k*" and write $\binom{n}{k}$.

Combinations

Forming a group of 5 from a class of 34 students.

Forming hands of 5 cards from a standard deck of 52.

Total

 $\binom{34}{5} = \frac{34!}{5!29!} = 278,256$

Lottery numbers in a 6-49 style $\binom{49}{6} = \frac{49!}{6!43!} = 13,983,816$

 $=\frac{52!}{5!47!}=2,598,.$ Э,

Permutations

- elements, in an ordered manner.
- We say "*n* permute k" and write $P_{k,n}$.

• You wish to select k elements from a set of n

Permutations

Selecting individuals for five roles from a group of 34 people.

Four digit lock combination with non-repeating digits.

Words with non-repeating letters with length 5.

Total

 $P_{5,34} = \frac{34!}{29!} = 33,390,720$

$P_{4,10} = \frac{10!}{6!} = 5040$

$P_{5,26} = \frac{26!}{21!} = 7,893,600$

Relating Permutations and Combinations

Next, you order these items, giving

Imagine you first select k of the items from the n total, giving you $\binom{n}{k}$.

g you
$$P_{k,k} = \frac{k!}{(k-k)!} = k!$$

$$\bigg) \times k! = \frac{n!}{(n-k)!}$$

straights are there?

$$\binom{52}{5} = 2,598,960$$

 $P_{5,13} = 154,540$

 $10 imes 4^5 = 10,240$

 $4^5 = 1024$

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

In five-card poker, a straight consists of five cards with adjacent denominations, of any suit. If aces can be considered high cards (beyond king) or low cards (before 2), how many possible

Counting and Probability

- If we count the number of total possible outcomes and the number of (assuming each event is equally likely).
- are chosen at random, what is the probability that exactly 3 are laser?

outcomes for the event, the ratio of these possibilities is the probability

• A shipment of 25 printers contains 10 laser printers and 15 inkjet printers. If 6

Subsets of 6 printers

Subsets of 6 printers, with exactly 3 lasers

N_A =

$\begin{array}{c}10\\3\end{array}\right)\times\left(\begin{array}{c}15\\3\end{array}\right)$

Probability of exactly 3 laser printers

P(A)

$=\frac{1}{3}A = 0.3083$

aces can be considered high cards (beyond king) or low cards (before 2), what is the probability of observing a straight?

$$rac{P_{5,13}}{\binom{52}{5}}=0.0594$$

$$rac{10 imes 4^5}{{52 \choose 5}}=0.00394$$

$$rac{10 imes 4^5}{P_{5,52}}=0.0000328$$

 $rac{P_{5,13}}{52^5}=0.82028$

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

In five-card poker, a straight consists of five cards with adjacent denominations, of any suit. If

How many possible sets birthdays are there in a room of $m{n}$ individuals (ignore leap years)?

How many possible sets of birthdays are there, for n distinct individuals, such that each individual has a different birthday?

What is the probability that, in a group of *n* distinct individuals, none of them share a birthday?

